国产黄色毛片-国产黄色毛片视频-国产黄色片91-国产黄色片一级-一级坐爱片-一级免费

FUZZY SETS AND SYSTEMS

FUZZY SETS AND SYSTEMS

模糊集和系統(tǒng)

期刊周期:Semimonthly
研究方向:數(shù)學
影響因子:2.907
通訊地址:ELSEVIER SCIENCE BV, PO BOX 211, AMSTERDAM, NETHERLANDS, 1000 AE
官網(wǎng):http://www.elsevier.com/wps/find/journaldescription.cws_home/505545/description
投稿地址:http://ees.elsevier.com/fss/default.asp?acw=8
審稿速度:約5.3個月

  中文簡介

國際模糊系統(tǒng)協(xié)會(IFSA)官方刊物自1978年創(chuàng)刊以來,《模糊集與系統(tǒng)》雜志一直致力于模糊集與系統(tǒng)理論與應用的國際發(fā)展。模糊集理論現(xiàn)在包含了一個組織良好的基本概念語料庫,包括(但不限于)聚合操作、廣義關系理論、信息內容的具體度量、模糊數(shù)演算。模糊集也是非加性不確定性理論(即可能性理論)的基石,也是語言和數(shù)值建模的通用工具(基于規(guī)則的模糊系統(tǒng))的基石。現(xiàn)在許多著作將模糊概念與其他科學學科以及現(xiàn)代技術相結合。在數(shù)學領域,模糊集引發(fā)了與范疇理論、拓撲、代數(shù)、分析等相關的新的研究課題。模糊集也是近年來研究廣義測度和積分的一種趨勢,并與統(tǒng)計方法相結合。此外,模糊集在多值邏輯的傳統(tǒng)中具有很強的邏輯基礎。基于模糊集的技術也是信息技術發(fā)展的重要組成部分。在信息處理領域,模糊集在聚類、數(shù)據(jù)分析和數(shù)據(jù)融合、模式識別和計算機視覺等方面具有重要意義。模糊規(guī)則建模已與神經(jīng)網(wǎng)絡和進化計算等其他技術相結合,并應用于系統(tǒng)和控制工程,應用于機器人、復雜過程控制和監(jiān)督。在信息系統(tǒng)領域,模糊集在開發(fā)智能靈活的人機接口和存儲不精確的語言信息方面發(fā)揮著重要作用。在人工智能中,各種形式的知識表示和自動推理框架都得益于基于模糊集的技術,如插值推理、非單調推理、診斷、邏輯規(guī)劃、約束定向推理等。模糊專家系統(tǒng)不僅用于故障診斷,也用于醫(yī)學領域。在決策和組織科學中,模糊集對偏好建模和多準則評價產(chǎn)生了重要影響,使優(yōu)化技術更貼近用戶需求。應用可以發(fā)現(xiàn)在許多領域,如管理,生產(chǎn)研究和金融。此外,模糊集理論的概念和方法已經(jīng)吸引了許多其他學科的科學家,如認知心理學和社會科學的一些方面的以人為本的研究。《模糊集和系統(tǒng)的范圍已經(jīng)擴大,占所有方面的領域,同時強調其特異性之間的鴻溝是人類表達的靈活性和精度和清晰的數(shù)學或計算機表示,他們是數(shù)字或符號。該雜志歡迎在模糊集領域的原創(chuàng)和重大貢獻,無論是在經(jīng)驗或數(shù)學基礎上,或其應用于任何領域的信息技術,更廣泛地說,在任何領域的調查,模糊集是相關的。特別歡迎證明模糊方法在實際問題中的實用性的應用論文。模糊集和系統(tǒng)出版高質量的研究文章,調查以及案例研究。單獨的部分是最近的文獻和公報,其中提供研究報告、書評、會議公告和各種新聞項目。邀請的評論文章一般感興趣的主題,并定期出版特別問題。

  英文簡介

Official Publication of the International Fuzzy Systems Association (IFSA)Since its launching in 1978, the journal Fuzzy Sets and Systems has been devoted to the international advancement of the theory and application of fuzzy sets and systems. The theory of fuzzy sets now encompasses a well organized corpus of basic notions including (and not restricted to) aggregation operations, a generalized theory of relations, specific measures of information content, a calculus of fuzzy numbers. Fuzzy sets are also the cornerstone of a non-additive uncertainty theory, namely possibility theory, and of a versatile tool for both linguistic and numerical modeling: fuzzy rule-based systems. Numerous works now combine fuzzy concepts with other scientific disciplines as well as modern technologies.In mathematics fuzzy sets have triggered new research topics in connection with category theory, topology, algebra, analysis. Fuzzy sets are also part of a recent trend in the study of generalized measures and integrals, and are combined with statistical methods. Furthermore, fuzzy sets have strong logical underpinnings in the tradition of many-valued logics.Fuzzy set-based techniques are also an important ingredient in the development of information technologies. In the field of information processing fuzzy sets are important in clustering, data analysis and data fusion, pattern recognition and computer vision. Fuzzy rule-based modeling has been combined with other techniques such as neural nets and evolutionary computing and applied to systems and control engineering, with applications to robotics, complex process control and supervision. In thefield of information systems, fuzzy sets play a role in the development of intelligent and flexible manBmachine interfaces and the storage of imprecise linguistic information. In Artificial Intelligence various forms of knowledge representation and automated reasoning frameworks benefit from fuzzy set-based techniques, for instance in interpolative reasoning, non-monotonic reasoning, diagnosis, logic programming, constraint-directed reasoning, etc. Fuzzy expert systems have been devised for fault diagnosis,and also in medical science. In decision and organization sciences, fuzzy sets has had a great impact in preference modeling and multicriteria evaluation, and has helped bringing optimization techniques closer to the users needs. Applications can be found in many areas such as management, production research, and finance. Moreover concepts and methods of fuzzy set theory have attracted scientists in many other disciplines pertaining to human-oriented studies such as cognitive psychology and some aspects of social sciences.The scope of the journal Fuzzy Sets and Systems has expanded so as to account for all facets of the field while emphasizing its specificity as bridging the gap between the flexibility of human representations and the precision and clarity of mathematical or computerized representations, be they numerical or symbolic.The journal welcomes original and significant contributions in the area of Fuzzy Sets whether on empirical or mathematical foundations, or their applications to any domain of information technology, and more generally to any field of investigation where fuzzy sets are relevant. Applied papers demonstrating the usefulness of fuzzy methodology in practical problems are particularly welcome. Fuzzy Sets and Systems publishes high-quality research articles, surveys as well as case studies. Separate sections are Recent Literature, and the Bulletin, which offers research reports, book reviews and conference announcements and various news items. Invited review articles on topics of general interest are included and special issues are published regularly.

  近年期刊影響因子趨勢圖

  相關數(shù)學SCI期刊推薦

SCI服務

搜論文知識網(wǎng) 冀ICP備15021333號-3

主站蜘蛛池模板: 日韩精品一区二区三区乱码 | a级毛片免费高清毛片视频 a级毛片免费高清视频 | 亚洲视频国产精品 | 美女被免费视频的网站 | 国产精品色内内在线播放 | 久久福利精品 | 亚洲精品国产成人7777 | 黄网在线 | 日韩国产欧美视频 | 午夜一区二区福利视频在线 | 性欧美一级毛片欧美片 | 日本加勒比在线视频 | 久久99国产亚洲高清观看首页 | 久草免费手机视频 | 9cao视频精品 | 美女视频大全视频a免费九 美女视频大全网站免费 | 国产一区二区在免费观看 | 国产成人mv在线观看入口视频 | 成人久久18免费软件 | 日韩欧美高清在线 | 日韩www视频 | 欧美日韩一区二区视频免费看 | 久在线视频 | 国产二区自拍 | 欧美一级淫片免费播放口 | 国内精品久久久久久久亚洲 | 在线一区二区三区 | caoporen国产91在线| 九九九精品视频免费 | 国产人成在线视频 | 美女精品永久福利在线 | 国产精品久久国产精品99盘 | 欧美一级毛片片aa视频 | 欧美性一级 | 久久国产精品久久精 | 精品极品三级久久久久 | 国产精品亚洲精品久久成人 | 免费人成黄页网站在线观看国产 | 91精品网站 | 在线观看国产日韩 | 国产精品偷伦费观看 |